
The Everywhere LST: Subsquid

Pierre (Dorian) Spiegel
Thunderhead

pierre@thunderhead.xyz

Addison Spiegel
Thunderhead & MIT

addison@thunderhead.xyz

Abstract

Subsquid is a distributed query engine and data lake able to serve ad-
vanced queries at a cheaper cost than traditional RPCs. It is built on Ar-
bitrum and uses a typical DePIN architecture, making it a perfect network
to implement the ”everywhere lst” thesis. Staked SQD (stSQD) is advan-
tageous to traditional staking because of its optimized APR, hassle-free
infrastructure management, and accessible DeFi ecosystem. The Staked
SQD protocol is a set of secure, trust-minimized contracts governed by
Staked SQD holders that onboards operators, rebalances for maximal re-
wards, and more.

1 Introduction

The Subsquid network consists of a network of hundreds of workers (currently
750). These workers are non-trivial to run, require significant amounts of in-
frastructure and earn rewards based on worker performance (e.g uptime). Ad-
ditionally, there is a bond to run a worker (100k SQD, roughly $8k USD). If
a staker does not meet this threshold, they must delegate and earn inferior re-
wards; worker self-stake earn 20% APR while delegators earn 10%. StakedSQD
is essentially a pool - thus stakers can earn worker APR with any stake-size. The
protocol automatically rebalances between delegation and self-stake to optimize
the network’s reward formula [2]. From a UX perspective, users simply deposit
SQD for stSQD and start earning rewards instantly. The contracts automati-
cally optimally apportion the SQD across a diverse and sophisticated operator
set. Users also do not need to run any infra, rather they watch their balance in-
crement every block. Lastly, the entire protocol is non-custodial because stSQD
holders have veto rights prior to any governance action.

1

mailto:pierre@thunderhead.xyz
mailto:addison@thunderhead.xyz

2 Architecture

2.1 Shares and Rebasing

Lido’s rebasing stETH relies on extrinsic transactions for discrete daily reward
distributions with an accounting system of underlying shares and an increasing
yield factor (balance = shares ∗ yieldFactor) to modify user balances. Lido
rebases once a day which increases all user balances in one chunk. However,
Staked SQD offers near-instant unstakes so a Lido-esque reward scheme would
allow malicious actors to mint tokens, wait for the rebase, and then instantly
unstake, diluting other users’ deposits. To remedy, we update the LST with
the rewards earned for the past epoch, and rather than distributing all rewards
to users instantly, they linearly earn rewards over the span of the next epoch.
Thus ensuring that all users earning rewards are actually contributing to the
protocol. Our share calculation is done by

yieldFactor = esupply+
rewards ∗ (t− etimestamp)

epochLength
if etimestamp < t < etimestamp+epochLength

where e is the state at the end of the last epoch and t is the timestamp. The new
share price is calculated solely based on onchain data from Subsquid contracts.

2.2 Operators & WorkerManagers

There are two types of yield on Subsquid: worker yield and delegator yield.
Rewards are paid out to both parties every epoch, with workers earning 20-
30% and delegators earning 10%. In order to be a worker, one must bond
100,000 $SQD and run complicated worker infrastructure. Rewards are paid
out to workers based on the utilization rate of the network and the worker’s
liveness/tenure. Delegators can bond any amount of tokens to a worker and
they earn half the rewards of the worker proportional to their stake.

2.2.1 Onboarding Operators

One of the most important parts of Staked SQD is the operator set. It is im-
perative that operators are of the highest quality and reliability as possible.
Operators are selected in a two step process. Thunderhead and the community
identify and due-diligence operators, indexing on technical prowess, reliability,
contributions and other factors. Operators then sign an SLA and a proposal is
created to onboard them to the protocol. The proposal contains the operator
manager address and operator fee. Operators are compensated as either a per-
centage of rewards or a fiat equivalent amount of SQD. stSQD holders will vote
on this proposal; if a certain percentage of holders reject the proposal, the op-
erator will not be onboarded (see governance section for more detail). Once an
operator is added the Staked Squid protocol will deploy a new WorkerManager.

2

2.3 WorkerManager

A caveat of Subsquid is that the pending reward of workers is an internal vari-
able, thus it is not possible to perform a ready only query of an operators
pending rewards. We instead must claim the rewards and observe the resultant
balance change. This means that in order to measure the reward output of
different operators, the protocol must have an address solely responsible for the
workers of that operator. WorkerManagers are contracts deployed by Staked
SQD when governance adds a new operator. Each WorkerManager is the staker
and manager of all workers that an operator runs. Upon every rebase the Work-
erManager claims the rewards of all workers and reports that back to the main
contract.

2.4 Registering Workers

In order to maximise the percentage of SQD staked we have a semi-automatic
staking system. StakeStack is a double ended queue (allows for removal and
addition at the front or back) that contains an operator and allowance of number
of workers they can stake. At any time an operator can register workers with
metadata and peerIds of their infrastructure. The number of workers they can
register at any given time is determined by the amount of free SQD tokens
and whether there is enough SQD to fill their slot (and previous slots) in the
StakeStack.
In addition, if there is a situation where there are insufficient workers in the
StakeStack to maximise working capital, there is functionality to delegate tokens
to any worker of choice.

2.5 Deregistering Workers

Unstaking workers is done in two transactions: deregistering and withdrawing.
After one deregisters a worker, they have to wait one epoch (which is 100 blocks)
before withdrawing the bond. Surplus SQD from incoming stakes will typically
fulfill user’s burns. However, if it is a larger burn and there is no available SQD
to fill it, Staked SQD will automatically deregister enough workers pulled from
UnstakeStack (a double ended queue containing the peerId of a worker), to fulfill
the burn. Once the epoch ends and the bond is able to be withdrawn, a user
can call redeem which will withdraw the bond from the deregistered workers
and transfer SQD to the user.

2.6 Rebasing & Rewards

Rebasing is done by calling the rebase function on the contract with no pa-
rameters. Rebasing claims all delegation rewards and then iterates through all
operators and claims rewards from their respective WorkerManager. Each op-
erator has their own fee, which is a percentage of their rewards or some fiat
amount of SQD. Operators can claim their respective fees. There is also a ser-
vice fee, which is a share taken from the entirety of rewards as a management

3

fee for the protocol. The yield factor calculation is updated with these rewards
to increase user balances over the next 24 hour period.

3 Vesting Contracts

A supermajority of SQD supply is vested[1]. However, institutions, early in-
vestors, and employees are still able to stake these tokens to support the col-
laterization of the network. Staked SQD is integrated into the SQD protocol
vesting contracts to enable locked holders to stake their tokens. Investors with
non-trivial token balances find it arduous to find worker operators. If they
opt for delegation, they will need to continually rebalance their delegations to
optimize their APR. Staked SQD solves this problem by automatically rebalanc-
ing between self-stake and delegation to maximize rewards. Investors are often
busy people - Staked SQD offers a one-click solution to earn premier rewards
and simultaneously support the network.

3.1 Implementation

The VestingManager is a contract that allows Subsquid vesting contracts to use
Staked SQD. The VestingManager allows vesting contracts to mint and burn
stSqd and claim rewards to an external address while ensuring it cannot transfer
principal out. When a vesting contract calls mint, the Manager increases the
balance of their address in a a ledger called staked and transfers the correspond-
ing amount of stSqd to their vesting contract address. When a vesting contract
wants to claim rewards they call claim on the VestingManager, which transfers
balance + unstaked − staked to a beneficiary address of the vesting contract’s
choice.

4 Governance

It is important that Staked SQD is non-custodial, trust-minimized, and user
controlled. Maintaining a separation of powers within governance is a key part
of this. The protocol has two-pronged governance structure. A multisig with
Thunderhead team members and associates may create proposals for the pro-
tocol. StakedSQD holders may veto proposals within the voting window. This
ensures that holders approve of all operators onboarded, changes to the protocol,
and more.

4.1 Usage

Governance will primariliy onboard and manage operators. Contract upgrades
and other parameter changes will likely be unnecessary. A single proposal is
created for each operator onboarding or other parameter chagne.

4

5 Conclusion

Users and institutions may interact with the protocol at stakedsqd.fi and in-
stitutional.stakedsqd.fi. Users can mint stSQD in less than a minute and start
earning hyper-optimized rewards immediately. Users can retrieve their SQD in
30m. The protocol is non-custodial and trust-minimized.

References

[1] Subsquid Labs. Subsquid Network Tokenomics. url: https://docs.subsquid.
io/subsquid-network/tokenomics/.

[2] Subsquid Labs. Subsquid Network Whitepaper. url: https://docs.subsquid.
io/subsquid-network/whitepaper/#reward-rate.

5

https://docs.subsquid.io/subsquid-network/tokenomics/
https://docs.subsquid.io/subsquid-network/tokenomics/
https://docs.subsquid.io/subsquid-network/whitepaper/#reward-rate
https://docs.subsquid.io/subsquid-network/whitepaper/#reward-rate

	Introduction
	Architecture
	Shares and Rebasing
	Operators & WorkerManagers
	Onboarding Operators

	WorkerManager
	Registering Workers
	Deregistering Workers
	Rebasing & Rewards

	Vesting Contracts
	Implementation

	Governance
	Usage

	Conclusion

